
LEVEL(
Office of Naval Research

Contract N00014-76-0060 NR 064-478

Technical Report No. 42

FURTHER STUDIES ON DYNAMIC CRACK CURVING

by (,•
r" j

.{1

Y.-J. Sun, M. Ramulu, A. S. Kobayashi and B. S.-J. Kang

November 1981

The research reported in this technical report was made possible through
support extended to the Department of Mechanical Engineering, University of
Washington, by the Office of Naval Research under Contract N00014-76-C-0060 NR
064-478. Reproduction in whole or in part is permitted for any purpose of the
United States Government.

LAJ

LA Department of Mechanical Engineering
College of Engineering

University of Washington

•.poe 7 or'::•~• -~ "I'
,, fr pw''

82 01 05 005



t, .

FURTHER STUDIES ON DYNAMIC CRACK CURVING

Y.-J. Sun*, M. Ramulu, A. S. Kobayashi and B. S.-J. Kang

University of Washington
Department of Mechanical Engineering

Seattle, Washington 98195

The elasto-dynamic stress field surrounding rapidly propagating cracks in
thin polycarbonate, double edged crack tension specimens were analyzed by dy-
namic photoelasticity using a 16-spark gap Cranz-Schardin cam.era system. Crack
curving was observed in rwo slarted double edged crack specimens and in two
offset parallel double edged crack specimens. In another test, the crack ran
straight between two symmetrically located twin cracks. Re.sults of these five
tests were used to verify the dynamic crack curving criterion by Ramuiu et al.
in which a reference distance of

ro=1/128/pi*[K1/sigmaox*V(c,cl,c2)]** 2

from the crack tip is incorporated into the maximum circumferential stress or
minimum strain energy density criteria. The critical material property for
crack curving in this thin polycarbonate sheet was found to be about rc= 0.5
nim.
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INTRODUCTION

In a paper in 1963, Erdogan and Sih [(1 used the orientation of maximum
circumferential stress to predict crack extension of inclined cracks in
tension specimens. This mixed mode crack extension criterion, commonly
referred to as the maximum circumferential stress criterion, was later
advanced among others by Williams and Ewing [2] and Finnie and Saith [3].
More recently, Streit and Finnie [4] incorporated the second order term,
sigmaox, in the crack tip stress field and proposed a crack curving
criterion based on the directional stability of a mode I crack propagation.
This stability criterion introduced another critical material parameter, ro,

which is the radial distance from the crack tip. The second order term of.
sigmaox was also used by Cotterell and Rice [5] for predicting the crack
curving direction of a slightly curved crack. Historically, Yoffe was the
first to use the maximum circumferential stress theory to explain surface
roughening and crack branching of a rapidly propagating crack in 1951 [6].

As a natural extension of Griffith's energy release rate, Hussain et
al. [7], Palaniswamy and Knauss [8] among others predicted the direction
crack kinking based on the maximum energy release criterion. Focusing
directly on energy, Sih [9] predicted that the crack would kink in the

direction of the minimum strain energy density factor, S. In an early
critique of 1976, Swedlow [10] concluded that the difference between the
crack kinking angle predicted by the maximum circumferential stress
criterion and the minimum strain energy density criterion "are modest at
most". Theocaris and Andrianopolous [11] recently modified the S theory and.1 designated the mean value of •, a critical material value for c'ack
extension. Sih [12] also applied the minimum S theory to predict crack
kinking of a dynamic crack.

Ramulu et al., in a recent paper [13], incorporated the second order
term of sigmaox in the dynamic crack tip btress field and then derived the
dynamic counterpart of the crack stability model based on the maximum
circumferential stress criterion as well as the minimum strain ea)ergy
density factor. This dynamic crack curving criterion was used to evaluate
nine dynamic photoelasticity tests involving curved as well as straight
propagating cracks in fracturing Homalite-100 specimens. The critical
material property of rc was found to be 1.3 mm for the Homalite-lO0
specimens investigated. More importantly, the crack curving directions
predicted by either the maximum circunmferential stress theory or the minimum
strain energy density theory were generally within I degree of each other
for the relatively low crack velocities observed in these tests. The sign
of sigmaox was also found to influence significantly the crack angle of a
running crack. The purpose of this paper is to provide further evidence in
support of the dynamic crack curving criterion advanced by Ramulu et al.

DYNAMIC CRACK CURVING CRITERIA

Maximum Circumferential Stress Criterion

The maximum circumferential stress criterion, as modified by Ramulu et
al. [13], assumes that the crack will extend towards the maximum
circumferential stress which reached its critical value at a critical
distance, rc, away from the rapidly propagating crack tip. rc is a
characteristic distance derivable from the crack stability criterion
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involving the second order term of sigmaox in the dynamic crack tip stress
field. This characteristic distance is [13).

ro = 1/128/pi*[KI/sigmaox*V(c,cic2)]**2

where KI is the dynamic stress intensity factor.
sigmaox is the second order term in the dynamic stress field

and is often referred to as the remote stress component.
c, cl and c2 are the crack velocity, dilatational wave velocity

and the shear wave velocity, respectively.
V(c,cl,c2) is the dynamic correction factor to the static crack Iinstability criterion and is given in Reference [13].

This crack curving criterion which is the dynamic extension of that by
F Streit and Finnie [3] can be used to predict the crack curving of a crack

propagating under pure mode I as well as mixed mode, i.e. modes I and II,
conditions.

Minimum Strain Energy Density Criterion

The minimum strain energy density criterioi, as modified by Ramulu et
al. [13], also incorporates the characteristic distance of ro and thus the
second order term of sigmaox in the strain energy density factor, S, of Sih

S[9]. Unlike the maximum circumferential stress criterion, the minimum S
condition yields a relation between the crack curving angle and ro in terms
of the given sigmaox and modes I and II stress intensity factors, KI and
KII. Given ro, however, the extended minimum strain enrgy density criterionwith the sigmaox term can be used to predict crack curving of a mode I
static crack or a cr,,ck propagating at a low crack velocity.

Homalite-lO0 Fracture Specimens

The validity of the above two dynamic crack curving criteria were
assessed through re-evaluated dynamic photoelasticity results of I
Homalite-100 fracture specimens [14-18]. ro for the minimum S criterion was
equated to rc which was found to be about 1.3 mm for the Homalite-100 data
used in evaluating the maximum circumferential stress criterion. For the
relatively low crack curving angles of -20 to 25 degrees observed in the
nine tests, both the maximum circumferential stress and the minimum strain
energy density criteria predicted the fracture angles within 1 degree for
most of the 81 data points considered in this investigation [13].

POLYCARBONATE FRACTURE SPECIMENS

In order to further verify the above dynamic crack curving criteria, a
series of dynamic photoelastic fracture experiments involving thin
polycarbonate fracture experiments were conducted. Specimen configurations
and the crack paths in five double edged crack tension specimens with either
offset parallel cracks offset slanted cracks and symmetrically located twin
cracks, used in this investigation are shown in Figure 1. The annealed thin
polycarbonate specimens with ýlunt starter cracks exhibited brittle fracture
with shear lips less than 10 percent of the thickness and an apparent crack
tip yield zone of less than 1.5 rmi. The dynamic isochromatics surrounding
the propagating crack were recorded with a 16 spark gap Cranz-Schardin c.,sr•

} . - - - ~ . --- -- ---• .



The isochroraatic data were reduced by least square fitting to the record-
ed dynamnc is6ciromatics a theoretical mixed-mode, dynamic crack tip stress

field with disposable parameters of KI, KII and sigmaox [19). The characteris-
tic crack tip distance, to, was then computed by Equation (1). With ro known,
the predicted crack curving angle can be computed by the maximizing condition
for the maxaimum circumferential stress criterion or the minimizing condition
for the minimum S criterion. Details of this data reduction procedure can be
found in Reference [20].

RESULTS

As shown in Figure 1, crack always propagated from the longer left crack
and curvea towards the shorter stationary right crack except for Specimen
S2-810518 which involved a symmetrically located twin crack. Also the eccen-
tric loading of Specimens S15-810727 and the longer initial crack length of
Specimen S5-810530 caused the rapidly propagating upper crack to intersect
with the stationary lower crack at its midcrack length.

Figure 2 shows two typical dynamic isochromatic patterns in a fracturing
offset, slanted, double edged crack tension specimen. The right edge crack
did not propagate during the entire fracture event. Both frames in Figure 2
show the expanding shear wave front which enanated from the original crack tip
of the left edged crack when it started to propagate. Figure 3 shows the var-
iati,'ns in KI, KII, sigmaox and crack velocity of the upper crack in Figure 2.
While the crack velocity and KI remained essentially constant through the rel-
atively straight propagation of the upper crack, sigmaox oscillated consistentI with previous observations [13].

Figure 4 shows two typical dynamic isochromatic patterns in a fracturing
offset, parallel double edged crack specimen. Although the upper crack had
cut the specimen in half, the stationary lower crack continued to show a high
mode II crack tip stress field in Frame No. 10 of this figure. A similar high
mode II crack tip stress field was observed in all stationary cracks during
the latter part of crack propagation history. Figure 5 shows the variations
in KI, KII, sigmaox and crack velocity of the upper crack in Figure 4. The
larger excursion in KI in this figure is associated with the curved crack
shown in Figure 4. Figure 6 shows the KI, KII and sigmaox of the lower sta-
tionary crack in Figure 4. While KI=3, MpaJr, of this crack was close to the
estimated fracture toughness of polycarbonate, the small difference in the
crack tip bluntness probably prevented crack propagation of the lower right
crack. KII of the stationary crack varied from -8.5 to 0.6 MPajm. and is
about half of the KI value. This high value, not commonly observed in previ-
ous dynamic photoelastic experiments, is due to the load redistribution caused
by the decreasing remaining ligament in the fracturing specimen.

Figure 7 shows typical isochromatics of an edge crack propagating between
two synuletricdlly located twin cracks. high mode II crack tin stress fields
are noted in the stationary twin cracks in Frame No. 12 of this figure. Fig-
ure 8 shows the variations in KI, KII, sigmaox and crack velocity of the propa-
gating left crack. Uscillations in sigmaox are smaller in this straight crack

which is propagating at approximately the same crack velocity of 0.2*cl as the
other cracks.

Figure 9 shows the variations in characteristic distance, ro, which was
computed by Equation (1), for the propagating cracks in the the five tests. ro
for the curved portion of the rapidly propagating crack is larger than the ro
of the straight crack. Also ro, within the scatter band indicated in Figure1
9, always dropped to a minimum value at the onset of crack curving. The j



scatter band of the minimum value of ro yield an average rc=0.5 amm. This val-
ue is consistent with the rc value estimated by Theocaris [21).

Having estimated the rc for this thin polycarbonate fracture specimens,
the crack curving angle was then estimated either by using the maximum circum-
ferential stress or the minimum S criteria. The results, as summarized in
Table 1, show that the predicted and experimentally observed crack curving an-
gles for these five tests were mostly within 1 degree of each other regardless
of the crack curving criterion used.

CONCLUSIONS

1. Dynamic crack curving angle under pure mode I and mixed mode I and II
conditions can be predicted by using either the extended maximum
circumferential stress or the minimum strain energy density criteria.

2. The critical characteristic crack tip distance is rc=O.5 mm for the thin
polycarbonate fracture specimens considered in this investigation.
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TABLE 1

SUMMARY OF EXPERIMENTAL AND THEORETICAL RESULTS

Total Number of Experiments: 5
Type of Fracture Specimens: Double Edged Crack Specimen
Number of Data Points: 114
Crack Velocity, c/cl: About 0.2
KI ,MParm): 1.5 to 3.2
KII (MPa{r): -0.5 to 0.6
sigmaox/KI: -11.1 to 2.5
ro (mm): 0.25 to 0.75

Measured Crack Curving Angle: -20 to 3 degrees
Predicted Crack Curving Anglv:

Maximum Circumferential Stress: -19 to 5 degrees
Minimum S: -18 to 5 degrees
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